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Abstract. A pair (A,B) of interacting Kerr oscillators treated as a master coupler sending chaotic or
hyperchaotic signals to its slave copy (a,b) is considered. We synchronize a with A and b with B through
two communication channels A ⇒ a and B ⇒ b. The effect of synchronization is non-simultaneous, the
pairs (a,A) and (b,B) have different times of synchronization. It is possible to synchronize an individual
pair, for example, (b,B) when its communication channel B ⇒ b is turned off, provided that the second
channel for the pair (a,A) is turned on. The resulted synchronization is termed induced. The efficiencies
of the presented synchronization precesses are studied.

PACS. 05.45.Xt Synchronizations; coupled oscillators – 05.45.Pq Numerical simulations of chaotic systems
– 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and
optical spatio-temporal dynamics

1 Introduction

Recently, there has been a great deal of interest in the
study of coupled oscillators and their role in explaining
the basic features of man-made and natural systems. Such
systems can exhibit on-off intermittency [1], two-state on-
off intermittency [2] or beats with chaotic envelopes [3,
4]. In particular, much attention has been paid to syn-
chronization of chaotic systems (for an up-to-date review,
see Ref. [5]). Different types of synchronization have been
considered, for example, complete synchronization [6–9],
partial synchronization [10,11], generalized synchroniza-
tion [12–15] or phase synchronization [16,17]. Especially,
the problem of synchronization of coupled chaotic oscil-
lators has been intensively studied mainly in view of a
potential application to secure communication [18–23].
The idea of synchronization has also been implemented in
higher dimensional systems exhibiting hyperchaotic be-
havior [24–26]. There are also examples of synchroniza-
tion in optical systems. Many potential applications are
expected in coupled laser systems [27–29], especially to
secure optical communication [30,31]. Quite recently, the
synchronization effects between two Kerr oscillators [32]
and between two systems generating second-harmonic of
light were found [33].

Frequently, in many optical applications, a multidi-
mensional system can be considered as a coupler of the
same or different interacting nonlinear oscillators (for a
review, see Ref. [34]). Then, in a synchronization pro-
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Fig. 1. Schematic diagram of two-channel synchronization.
Signals from two interacting master oscillators A and B are
sent to a system containing two corresponding slave oscillators
a and b. The signals are controlled by the parameters S1 and
S2. Synchronization is achieved if the output signals satisfy the
relations Xa = XA and Xb = XB .

cess, individual master oscillators are linked to slave os-
cillators through synchronization channels. The general
synchronization set-up to be considered is presented in
Figure 1. The master system consists of two coupled os-
cillators (A,B) interacting with each other (the symbol
α denotes a parameter of interaction between A and B).
If α = 0, the master coupler consists of two independent
oscillators. The slave coupler (a,b) is a copy of the master
one. The signals XA and XB from (A,B) are transmit-
ted to (a,b) by differential feedback terms S1(XA − Xa)
and S2(XB − Xb). The control parameters are denoted
by S1 and S2, respectively. The master and slave couplers
starting from different initial conditions generate different
chaotic signals which are to be synchronized.
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In this paper, we study a possibility of synchronization
of two optical Kerr couplers (A,B) and (a,b) on the basis
of the schematic diagram presented in Figure 1. The first
question is whether and when the individual drive-driven
oscillators (a,A) and (b,B) have different times of syn-
chronization. The next question is whether both couplers
can be synchronized if one of the synchronization channels
has been turned off. And finally, whether the partial syn-
chronization of the couplers is possible, i.e. whether only
one of the pairs (a,A) or (b,B) can be synchronized, while
the other cannot.

2 The model

Let us consider an optical system (A,B) which consists
of two Kerr oscillators. They interact with each other and
are pumped by time external fields. The Hamiltonian of
the system has the form:

H = HKerr + Hint + Hext, (1)

HKerr = ω0X
∗
AXA + ω0X

∗
BXB + εX∗2

A X2
A + εX∗2

B X2
B,

(2)

Hint = −α

2
(X∗

AXB + XAX∗
B) − α

2
(X∗

AX∗
B + XAXB) ,

(3)

Hext = −(
√

2)−1F [(X∗
A + XA) cosΩ1t

+ (X∗
B + XB) cosΩ2t], (4)

where the terms ω0X
∗
AXA and ω0X

∗
BXB describe simple

harmonic oscillators, both with the natural frequencies ω0.
The dynamical variables XA and XB are the complex am-
plitudes of modes A and B, respectively. The parame-
ter of Kerr nonlinearity is denoted by ε. The interaction
between the Kerr oscillators is governed by the Hamil-
tonian (3), where α is an interaction parameter. If the
rotational terms (X∗

AX∗
B + XAXB) are neglected, the in-

teraction Hamiltonian (3) is in the so-called rotating wave
approximation (RWA). The Kerr oscillators are pumped
by the external time-dependent fields with the amplitude
F and frequencies Ω1 and Ω2, respectively. The Hamilto-
nians (1–4) have a very simple form in the momentum-
position representation (p, q). Putting ω0 = 1 and tak-
ing into account the canonical transformation XA,B =
(
√

2 )−1(qA,B + ipA,B) and X∗
A,B = (

√
2 )−1(qA,B − ipA,B)

we get

H = HKerr + Hint + Hext, (5)

HKerr =
(
p2

A/2 + q2
A/2

)
+ ε

(
p2

A/2 + q2
A/2

)2

+
(
p2

B/2 + q2
B/2

)
+ ε

(
p2

B/2 + q2
B/2

)2
, (6)

Hint = −αqAqB, (7)
Hext = −F (qA cosΩ1t + qB cosΩ2t) . (8)

If the interaction Hamiltonian (3) is in the rotating
wave approximation then additionally, a momentum-
momentum interaction appears in (7), consequently we
have Hint = −α(qAqB + pApB). If ε = 0, the Hamilto-
nian (5–8) describes a standard text-book model of two
coupled linear subsystems.

The Hamiltonian (1–4) with ω0 = 1 leads to the fol-
lowing equations of motion [32]:

dXA

dt
= −iXA − γAXA − 2iεX∗

AX2
A

+i
α

2
(XB + X∗

B) + i(
√

2 )−1F cosΩ1t, (9)

dXB

dt
= −iXB − γBXB − 2iεX∗

BX2
B

+i
α

2
(XA + X∗

A) + i(
√

2 )−1F cosΩ2t, (10)

where the damping terms γA,BXA,B have been added phe-
nomenologically. The coefficients γA,B are damping con-
stants. The linear terms iα

2 (XB + X∗
B) and iα

2 (XA + X∗
A)

in the above equations of motion are responsible for the
interactions between individual Kerr oscillators. In the
RWA-case the variables X∗

B and X∗
A do not appear in

the equations of motion. The slave coupler is a replica
of the master coupler (9, 10), where A → a and B → b.
According to the continuous feedback method [6,36], our
master coupler (A,B) is coupled to the slave coupler (a,b)
in the following way

dXa

dt
= −iXa − γaXa − 2iεX∗

aX2
a

+ i
α

2
(Xb + X∗

b ) + i(
√

2 )−1F cosΩ1t + S1(XA − Xa),

(11)

dXb

dt
= −iXb − γbXb − 2iεX∗

b X2
b

+ i
α

2
(Xa + X∗

a) + i(
√

2 )−1F cosΩ2t + S2(XB − Xb).

(12)

For numerical studies it is convenient to rewrite equa-
tions (9–12) in real variables, we get the following eight
equations of motion:

dqA

dt
= pA[1 + ε(p2

A + q2
A)] − γAqA, (13)

dpA

dt
= −qA[1 + ε(p2

A + q2
A)] − γApA + αqB + F cosΩ1t,

(14)
dqB

dt
= pB[1 + ε(p2

B + q2
B)] − γBqB , (15)

dpB

dt
= −qB[1 + ε(p2

B + q2
B)] − γBpB + αqA + F cosΩ2t,

(16)
dqa

dt
= pa[1 + ε(p2

a + q2
a)] − γaqa + S1(qA − qa), (17)

dpa

dt
= −qa[1 + ε(p2

a + q2
a)] − γapa

+ αqb + F cosΩ1t + S1(pA − pa), (18)
dqb

dt
= pb[1 + ε(p2

b + q2
b )] − γbqb + S2(qB − qb), (19)

dpb

dt
= −qb[1 + ε(p2

b + q2
b )] − γbpb

+ αqa + F cosΩ2t + S2(pB − pb). (20)
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We study equations (13–20) numerically with the help of
the fourth-order Runge-Kutta method with the integra-
tion step ∆t = 0.01.

3 Two-time synchronism

Below, the system (13–20) is examined for selected values
of the parameters. In the first example the Kerr nonlinear-
ity is very small (ε = 10−9), the frequencies of the external
fields are nearly equal Ω1 ≈ Ω2, and all the damping con-
stants are identical γa,A = γb,B. The second example deals
with a Kerr nonlinearity ε = 10−1, the identical frequen-
cies Ω1 = Ω2 and distinctly different damping constants
γa,A � γb,B.

The condition of small Kerr coupling ε is met e.g.
in modern optical fibers. The coupling Kerr constant is
dependent here on the so-called normalized frequency of
modes in a waveguide. We can change this parameter by
choosing the appropriate optical frequency, material and
geometrical properties of a fiber. Roughly speaking, choos-
ing the normalized transverse wavenumbers of a field in a
fiber we are able to change the coupling Kerr constants
by changing the normalized frequency of modes. In cer-
tain types of fibers for small normalized frequencies we
can obtain a very small Kerr constant [35].

3.1 Example 1. S1 �= S2 and γA = γB = γa = γb

The system (13–20) starts from the initial condi-
tions {qA(0), pA(0), qB(0), pB(0), qa(0), pa(0), qb(0), pb(0)}
= {100, 0, 100, 0, 1, 0, 1, 0} and the following fixed param-
eters γA,B = γa,b = 0.001, ε = 10−9, α = 0.04, F = 200,
Ω1 = 1 and Ω2 = 1.05.

Let us first briefly describe the dynamics of the mas-
ter coupler governed by equations (13–16). For t >
0 due to different frequencies Ω1 and Ω2, the states
of the oscillators A and B are always different i.e.
qA(t) �= qB(t) and pA(t) �= pB(t). The autonomized
spectrum of Lyapunov exponents for the system (13–16)
computed by the method of Wolf et al. [37] is given by
{0.008, 0.004, 0.000,−0.007,−0.010}, which means that
the master coupler is hyperchaotic. It is interesting that
for α = 0 neither A nor B is chaotic, both oscillators
behave quasiperiodically. The Lyapunov exponents of the
slave coupler, which is a copy of the master coupler are
identical.

Let us now concentrate on the master-slave dynamics.
If the feedback terms in equations (17–20) are switched
off, the slave coupler is independent of the master cou-
pler. Mathematically, the set of equations (13–20) consists
of two independent sets: (13–16) and (17–20) which phys-
ically correspond to the separate couplers. These sepa-
rate hyperchaotic couplers generate irregular revivals and
collapses (Fig. 2) whose pattern resembles the temporal
structure of voice [25]. As time goes on, a trajectory, for
example qa = qa(t), with chaotically modulated amplitude
passes through the equilibrium position qa = 0 at regular
intervals of ∼ (Ω1 + Ω2)−1. This regularity is similar to
that which appears in beats generated by a linear system.

However, in contradistinction to linear systems, a num-
ber of revivals (collapses) generated by a chaotic system
and observed in a fixed interval cannot be determined as
a function of the mismatch between the frequencies of the
input fields. A beating frequency does not exists for beats
with chaotic envelopes.

Let us now consider synchronization of the beats pre-
sented in Figure 2, when the feedback terms are switched
on at the time t0 = 480. The choice of the initial time
t0 = 480 is motivated by the fact that for this time the
states of the master and slave couplers are distinctly dif-
ferent as clearly seen in Figure 2. The synchronization
time Ts is defined as Ts = ts − t0, where ts is defined as
the time after which the quantity qA,B − qa,b takes values
lower than 10−3. The dynamics of the synchronization is
strongly different for the cases S1 �= S2 and S1 = S2. For
S1 = S2 the synchronization times for the pairs of oscil-
lators (a,A) and (b,B) are the same. However, for the
control parameter S1 �= S2 we can observe two different
times of synchronization T

(a,A)
s and T

(b,B)
s for the master-

slave oscillators (a,A) and (b,B), respectively. This two-
time synchronism is illustrated in Figure 3 for the values
S1 = 5 and S2 = 0.025. The functions ∆(a,A) = qa−qA and
∆(b,B) = qb − qB, being a measure of synchronization for
the appropriate pairs of oscillators, show that the synchro-
nization process for the pair (a,A) is faster (T (a,A)

s = 409)
than for the pair (b,B) for which T

(b,B)
s = 790. Identical

results also hold for pa−pA and pb−pB. A detailed numer-
ical analysis shows that the difference ∆ = T

(b,B)
s −T

(a,A)
s

decreases exponentially to zero with increasing value of
the interaction parameter α. Therefore, the strong linear
interaction between the oscillators in the coupler leads, in
practice, to disappearance of the two-time synchronism.
The efficiency of the synchronization process depends on
the values of α, S1 and S2. By way of example, this is illus-
trated in Figure 4, where the synchronization times T

(a,A)
s

and T
(b,B)
s are presented as functions of the control param-

eter S2 (for the fixed values of α = 0.04 and S1 = 5). As
shown, the pair of oscillators (a,A) always synchronizes
earlier then the pair (b,B), which is a consequence of the
fact that the synchronization signal in the first channel is
much stronger than that in the second channel (S1 > S2).
If the value S2 tends to S1, then the difference between
T

(a,A)
s and T

(b,B)
s vanishes and finally we observe only

one-time synchronization i.e. T
(a,A)
s = T

(b,B)
s .

The two-time synchronization also occurs for S2 <
0.01 (not shown in Fig. 4 as long synchronization times are
not important in communication technique). If S2 → 0,
the times T

(a,A)
s and T

(b,B)
s tend to infinity.

The question is what is the effect of the choice of t0 on
the results. The numerical analysis shows that the individ-
ual synchronization times T

(b,B)
s and T

(a,A)
s depend on the

time t0, that is, the time at which the feedback terms are
switched on. Because of S1 �= S2 we have T

(a,A)
s �= T

(b,B)
s ,

which means that the pairs (a,A) and (b,B) have always
different synchronization times. If S1 > S2 then the pair



176 The European Physical Journal D

-15000

-10000

-5000

0

5000

10000

15000

0 200 400 480 600 800 1000

q a

t

-15000

-10000

-5000

0

5000

10000

15000

0 200 400 480 600 800 1000

q A

t

-15000

-10000

-5000

0

5000

10000

15000

0 200 400 480 600 800 1000

q b

t

-15000

-10000

-5000

0

5000

10000

15000

0 200 400 480 600 800 1000

q B

t
Fig. 2. Evolution of qa, qA, qb and qB vs. t for equations (13–20) if S1 = S2 = 0. The other parameters are: γA,B = γa,b = 0.001,
ε = 10−9, α = 0.04, F = 200, Ω1 = 1 and Ω2 = 1.05.

(a,A) synchronizes faster then the pair (b,B) or inversely
if S2 > S1.

3.2 Example 2. S1 = S2 = S and γa,A � γb,B

The two-time synchronism can appear in the system (13–
20) not only if S1 �= S2. This behavior is also observed
for S1 = S2 = S, if instead of the identical damping

constants, the couplers have different damping constants
satisfying the relation γa,A � γb,B. Let us suppose that
γa,A = 0.05 and γb,B = 0.5, which indicates that the sec-
ond oscillators in both couplers are much stronger damped
than the first ones. Here, the system (13–20) starts from
the initial conditions {qA(0), pA(0), qB(0), pB(0), qa(0),
pa(0), qb(0), pb(0)}={1, 0, 3, 4, 1,−2, 3, 10} and the follow-
ing fixed parameters: ε = 0.1, α = 0.4, F = 200 and
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Ω1,2 = 0.55. The dynamics of the system (13–20) is stud-
ied for the selected values of S = S1 = S2.

The dynamics of the master coupler differs from that
described in Section 3.1. There are no beats here. For
α = 0 the oscillators A and B become independent sub-
systems. Then, the oscillator A manifests chaotic behav-
ior forming a chaotic attractor in phase space, whereas
the oscillator B is nonchaotic and tends to a limit cy-
cle (see Fig. 1 in Ref. [32]). The autonomized Lyapunov
spectra for A and B oscillators are {0.08, 0.00,−0.23}
and {0.00,−0.55,−0.90}, respectively. For individual val-
ues of α �= 0, the oscillators A and B interact with each
other and can be chaotic or not [3,32], depending on
the value of α. For α = 0.4 they behave chaotically as
clearly seen from the spectrum of Lyapunov exponents
given by {0.06, 0.00,−0.21,−0.63,−0.80}. The Lyapunov
coefficients of the slave coupler are identical to those of
the master coupler.

Let us now consider the dynamics of synchronization
for the system (13–20) putting S1 = S2 = S. The feed-
back terms are switched on at the time t0 = 100 in or-
der to eliminate the transient behavior. The synchroniza-
tion time Ts is determined as Ts = ts − t0, where ts is
defined as the time after which the quantities qa − qA

and qb − qB are lower than 10−3. It is interesting to note
that for γb,B � γa,A the pair (b,B) synchronizes earlier
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The other parameters are: γa,A = 0.05, γb,B = 0.5, ε = 10−1,
α = 0.4, F = 200 and Ω1,2 = 0.55.

than the pair (a,A). This situation takes place for any
value of S. Consequently, we observe two different times
of synchronization T

(a,A)
s and T

(b,B)
s satisfying the rela-

tion T
(a,A)
s > T

(b,B)
s as illustrated in Figure 5. As seen

the synchronization times T
(a,A)
s and T

(b,B)
s are small in

comparison to those presented in Figure 4. In the range
0.4 < S < 0.5 two sharp minima appear. The synchro-
nization time T

(b,B)
s is particularly small. If we change

the time t0 that is the time at which the feedback terms
are switched on the presented anomalies vanish.

The behavior presented in Figure 5 suggests an addi-
tional question, namely, what is the effect of the damping
constants different from those in Figure 5 on the function
|∆| = |T (b,B)

s − T
(a,A)
s | describing the difference between

the synchronization times. The calculations show, that the
quantity |∆| increases with increasing difference between
the damping constants γa,A and γb,B. If γa,A > γb,B then
the pair (a,A) synchronizes faster then the pair (b,B)
and inversely if γb,B > γa,A.

4 Induced synchronization

The dynamics of synchronization examined in Sections 3.1
and 3.2 concerns a two-channel process. Let us now
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suppose that in the schematic diagram (Fig. 1) only the
signal from the master subsystem A is transmitted to its
slave counterpart a, whereas the second signal from B to
b is turned off (see, Fig. 6). Below, we compare the two-
channel dynamics of synchronization with its one-channel
version.

4.1 Example 1. S1 �= 0, S2 = 0
and γA = γB = γa = γb

We solve now equations (13–20) for S1 �= 0 and S2 = 0.
Below, we consider the synchronization times T

(a,A)
s and

T
(b,B)
s as a function of S1 for a fixed value S2 = 0. The

other parameters are as those in Section 3.1. The numer-
ical analysis shows that for the one-channel synchroniza-
tion process, T

(a,A)
s and T

(b,B)
s are approximately equal

i.e. T
(a,A)
s ≈ T

(b,B)
s = Ts. Therefore, in practice, the pairs

(a,A) and (b,B) have the same synchronization time (de-
noted in Fig. 7 by triangles). This nearly one-time behav-
ior in contradistinction to the distinct two-time behavior
(triangles and bullets in Fig. 4) is caused by the small dif-
ferences between the values S2 = 0 and 0 < S1 < 0.09.
For S2 = 0 and S1 > 0.09 synchronization does not occur.
However, the main difference between Figures 4 and 7 is
that the synchronization times for the two-channel pro-
cess decrease exponentially with increasing values of the
control parameter, whereas for its one-channel version the
synchronization process has a local character. Namely,
the fastest synchronization takes place at S1 = 0.032 and
then the synchronization time takes the minimum value
Ts = 1655. It is interesting to note that in the range
0.041 < S1 < 0.061 the synchronization time reaches a
nearly constant value. The average synchronization time
in this region is equal to 〈Ts〉 ≈ 1700. As seen from Fig-
ure 7 (triangles), the one-channel synchronization process
is the most effective in the range 0.025 < S1 < 0.061, that
is when S1 ≈ α. In the range S1 < 0.01 and S1 > 0.1 the
synchronization is not observed.

It is also interesting to compare one-channel synchro-
nization (S1 �= 0, S2 = 0) with its two-channel version
satisfying the condition S1 = S2. In this case the syn-
chronization times for the pairs (a,A) and (b,B) are
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equal. The comparison is presented in Figure 7. The dy-
namics of the one-channel synchronization (triangles) dif-
fers strongly from its two-channel version (diamonds). For
S2 = S1, the synchronization time Ts decreases nearly
exponentially with increasing values of S1, whereas for
S1 �= 0, S2 = 0 this relation does not hold. The efficiency
of the induced synchronization (S1 �= 0, S2 = 0) is always
lower than the synchronization forced by two channels and
satisfying the relation S2 = S1.

4.2 Example 2. S1 �= 0, S2 = 0 and γa,A � γb,B

Numerically, we study here the system (13–20) with S2 =
0 and S1 = S. The other parameters are the same as in
Section 3.2. Here, two-time synchronism presented in Fig-
ure 8, similarly as in the two-channel process (Fig. 5), fol-
lows from by the condition γa,A � γb,B. However, there is
one important difference between these figures. In the case
presented in Figure 8, for S > 0.62 the first pair (a,A)
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parameters are: γA,B = γa,b = 0.05, ε = 10−1, α = 0.01, F = 200 and Ω1,2 = 0.55.

always synchronizes earlier than the second (b,B),
whereas, for S < 0.62 we observe the same behavior (apart
from a few points) as in Figure 5, i.e. the second pair syn-
chronizes earlier then the first one. Let us emphasize that
the second pair is synchronized, though the master sub-
system B does not send a signal to the slave subsystem b.

It interesting that for γa,A = 0.05, γb,B = 0.5 and
α = 0.4, the synchronization of the system (13–20), with
S1 = 0 and S2 �= 0, which corresponds to the following
simplified diagram

A a


 

B =⇒ b

is not possible for any value of S2. In other words, for the
parameters considered, the change of the upper channel
A ⇒ a in the lower B ⇒ b exclude any synchronization.
Physically, the damping constant γb,B = 0.5 is too high in
order to force synchronization of the two couplers through
the lower channel.

4.3 Example 3. Partial synchronization

If S2 = 0 and the interaction parameter α is very small
in comparison to the value S1 (but sufficient to generate
strong chaos or hyperchaos in the coupler) then the in-
duced synchronization can be partial. It means that the
first pair (a,A) in Figure 6 is synchronized, whereas the
second pair (b,B) is not. This effect is easy to get in
the system (13–20) if S1 = 60, S2 = 0, γA,B = γa,b = 0.05
and α = 0.01. The other parameters and the initial con-
ditions are the same as in Section 3.2. The feedback term
is turned on at the time t0 = 100. For α = 0.01 the cou-
pler behaves hyperchaotically. The appropriate spectrum
of Lyapunov exponents is {0.09, 0.08, 0.00,−0.22.− 0.23}.
For α = 0 both oscillators do not form a coupler. They
are independent, identical and chaotic – the spectrum is
{0.08, 0.00,−0.23}. As follows from Figure 9, synchroniza-
tion of the first pair is nearly immediate after turning on a
very strong feedback signal (S1 = 60). On the other hand,

the interaction between the oscillators within the coupler
is so weak (α = 0.01) that it is not able to force syn-
chronization of the second pair (b,B). If α = 0 the pair
(b,B) is not synchronized ex definitione because S2 = 0,
and synchronization of the pair (a,A) can be achieved for
a very small feedback signal, for example S1 = 0.1 i.e.
the feedback small in comparison to S1 = 60 when the
α-interaction is switched on.

5 Conclusions

Generally, the dynamics of the one-channel synchroniza-
tion process is different from its two-channel version. In
the one-channel process presented in Figure 6 the pair
(b,B) is synchronized, though the master subsystem B
does not send a signal to the slave subsystem b. Syn-
chronization of the pair (b,B) is forced only by the first
channel A ⇒ a, and the effect is termed induced synchro-
nization. This effect, to our knowledge has been studied
numerically in an optical system for the first time. Syn-
chronization of the complex output signals XA = Xa and
XB = Xb is equivalent in obvious way to intensity syn-
chronization X∗

AXA = X∗
aXa and X∗

BXB = X∗
b Xb. The

occurrence of two-time synchronism and the induced syn-
chronization in the dynamical systems presented schemat-
ically in Figures 1 and 6 seems not unique and rather com-
mon. To observe these effects we can also use instead of
two interacting Kerr oscillators, typical mechanical sys-
tems, for example; the Duffing models considered in [38,
39] or other two high-dimensional systems. However, the
effect of induced synchronization becomes more and more
difficult to achieve if the set-up presented in Figure 6
is supplemented by additional subsystems C,D, ... and
c,d, ... In this way we build up a kind of a multilayer
coupler. The induced synchronization effect and two-time
synchronism are presented for the systems with different
Kerr nonlinearities. The induced synchronization seems
to have potential application in secure communication to
hide messages [22]. The appropriate materials useful for
the generation of different types of chaotic and hyper-
chaotic signals (for example, beats with chaotic envelopes)
could be optical systems consisting of a pair of coupled
Kerr fibers [35,40–43].
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